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FOREWORD

The lift/cruise fan exhaust system research program was conducted tor
the U S. Army Transportation Rescarch Command., The program was
designed and directed by the Contractor's Project Engineer,

Mr. J. T. Kutney, previously Manager, Applications and Installations,
Lift Fan Systems Operation, General Electric Company. The data
analysis and the writing of the technical report were performed by

Mr. w. A. Fasching, Acro-Mechanical Systers Engincer, Lift Fan Systems

Operation.

The program was initiated on June 6, 1963, originally consasting of
seven test configurations, then amended on Januury 23, 1964. Testing
was begun in September 1963, and the initial test was completed on
December 27, 1963. The second part of the program was started 1n

March 1964, and it was completed on April 3, 1964.
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SUMMARY

An experimental investigation has been conducted to obtain design
data for low-pressure-ratio lift/cruise fan exhaust systems. The
testing was accomplished in the FluiDyne Corporation wind tunnel

test facility in Minneapolis, Minnesota. The test results of conical
convergent and plug nozzle scale models are presented and evaluated
in this report. The test data provide valuable design information

for 11ft/cruise fan nacelle installations.

The important results of the program and conclusions drawn from the

test data to date are as follows:

High thrust-minus-drag Mach .8 cruise performance
(c T-D = .965) was demonstrated at a low nozzle
pressure ratio of 1.94 for both comical and plug
nozzle l1i1ft/cruise fan nacelle installations
having a throat area to maximsum model area ratio

(AB/A.) of .43.

For cruise Mach numbers over .85, conical nozzle
installations perform better than plug nozzles

for the investigated nacelle installation.

Friction drag plays a predominant role in the
optimization of 11ft/cruise fan nacelle

installations.
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CONC LUS TONS

From the analysis of the test results the tollowtm concla dons o an

£~

drawn for the range of parameters investipgated.

High thrust-minus-drag Mach R cruise performance (<,r D = ,90)
was demonstrated at a low nozsle pressure ratio of 1,94 for
both conical and plug nozzle 11ft /cruise fan nacelle installation.

having a throat srea to maximum modcl area ratto (AB/AI) of .13,

For cruise Mach numbers over .85, conical nozzle installations

perform better than plug nozzles for the investipgated nacelle

installation,

Skin friction drag played a predominant role i1n the lift/cruise

fan models tested.

For Mach numbers up to .85, performance increases with a decrease
in nacelle radius to maximum model diameter ratio (R D') for the
range investigated because of the decrease in friction drag. For
Mach numbers over .85, performance decreases with a decrease tn
nacelle radfus to maximum model diameter ratio for the range

investigated because of the rise 1n pressure drag.,

For Mach numbers up to .85, plug nozzle performance i1ncreases
with an 1ncrease 1n plug angle for plug angles from 12,5 to

20 degrees. For Mach numbers over .85, plug nozsle performance
decreases with an i1ncrease in plug angle because of the rise 1in

boattail drag.



10.

11,

12,

13.

For higher plug angle configuration (6 = 20 - 25°) performance

increases with plug angle only at subcritical nozzle pressure
<

ratios Ppy/P_* 1.89). For pressure ratios higher than

critical, performance decreases with increasing plug angle.

Static peak performance, in general, increases with decreasing

plug angle,

Plug nozzle performance increases with an increase in throat
area (As) at constant nozzle exit area (Ag) and nozzle pressure
ratio (PTN/ Py ) because of the higher ideal thrust per nozzle exit

area and its inherent decrease of the thrust decrements.

Truncating the plug one-third of its full length reduces the
performance by about .01 to .04 in gross thrust coefficient. The

loss decreases with increasing Mach number.

Nozzle discharge coefficients decrease with an increase in nozzle

internal shroud angle.

Conical nozzle discharge coefficients at lower than critical

pressure ratios fall off with decreasing nozzle pressure ratio.

Plug nozzles have higher discharge coefficients at nozzle pressure
ratios below critical than conical nozzles. The discharge

coefficients do not change considerably from choked nozzle levels,

Correlations of analytically calculated nacelle pressure distri-
butions to measured values are fair at low subsonic Mach numbers.
At high subsonic Mach numbers the analytical pressure coefficients

are considerably higher than the measured ones,



RECOMMENDAT IONS

Based on the results of the present investigation,the following
recommendations are made with regard to the aerodynamic design of

11ft/cruise fan nacelles:

1. Conical nozzle nacelle installations for cruise Mach numbers
below .85 should have rather high boattail angles ( 8 = 15 - 200)
and small nacelle radius to maximum installation diameter ratios
(R/Dl = 2,5 - 3.9%).

For cruise Mach numbers over .85, low boattail angles
( B =10 - 15") and high radtus ratios (R/D, = 5 - 7) are
required for good performance.

2. Plug nozzle nacelle installations for cruise Mach nuabers below
.85 should have rather high boattail angles (B = 12 - 20°),
small nacelle radius to maximum installation diameter ratios

(R/D. = 1,5 - 2,0), and steep plug angles (O = 15 - 18°) .

For cruise Mach numbers over .85, low boattail angles

(8 =7 - 100), high nacelle radius to maximum installation
diameter ratios (R/DI = 2.5 - 3.5) and small plug angles

( 8 =10 - 13°) are required for good performance.

3. Lift/cruise fan nacelles should be designed with as high a ratio

of throat area to maximum installation area as possible,

The prescnt program was designed to producce genvral gualatative design
information for litt,crurse fan exhaust systems, An extension of thas
program would be the optimization of a specific design, for which the

following recommendations are made:



EXPERIMENTAL

1. Test model with fan driven by air turbine an wind tunnel to
obtatn corrclation to actual nacelle thru  t minus dro, data
in the free stream,

2. Test some of the models an a bigpeer tunnel to determine the
vifect of tunnel blockage.

4. Investigate the effect of boundary layer thickness on nacelle
drag since full-scale boundary layer thicknesses are different
from scale-model conditions and skin friction plays a  pre-
dominant role tor the models tested,

4., Investagate plug contours with gradually increasing angle for
improvements in plug force,

5. Investigate the etfect of plug crown curvature and upstream
flow path on noszle pertormance,

ANALYT ICAL

1. Evaluate the change in effective surface curvature with
compressibility due to boundary layer influence,

2 Evaluate the 1nfluence of surface roughness on the inviscid
flow ficld considering especially the smoothing e¢ffect of
boundary layer action,

3. Develop estimation techniques for jet wake positions and thear

influence on inviscid {low fields.



INTRODUCT TON

Exhaust system performance is a very sapnilicant parameter an the

analysts of low-pressure-ratio propulsion systems, such a Lt and

cruise fans.  The high-bypass-ratio characteristics of the 1t crui e

fan result tn a gross to net thrust ratio of approximately 4 to 1 oat
hiph subsonic Mach numbers. Improvements 1n exhaust nozzle thrust
coefficient or nacelle drag coefficient of, for example, 1 percent,
make the propulsion system performance bhetter by 4 percent, or its
specific fuel consumption lower by the same percentage for the high-

speed cruise flight condition.

Li1f{/cruise fan nozzle pressure rattos lie mostly below the critical
level. Very little test data 1s available for this range, as the
many previous investigations have been conducted for turbojet or
rocket engines with their inherent higher nozzle pressure ratios.
Reference 2 gives a preliminary investigation of the problem and

formed the basis for this program.

The objective of this program was to obtain static and i1nstalled
exhaust system performance data for the runyes of interest to lLift/
cruirse fan technology. Cruisc fan nacelles with conical and plug
nozzles were 1nvestipgated, and the pgeometry of these configurations

was optimized for maximum thrust-minus-drag performance.
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ANALYSIS OF PROBLEM

The thermal efficiency of a propulsion system is the product of cycle
efficiency and propulsive efficiency. Cycle efficiency is defined as
the ratio of energy output to energy input of the engine. The

propulsive efficiency is stipulated as the ratio of the energy output

to the airplane to the energy output of the engine.

The 11. cruise fan propulsion concept uses a jet engine to drive a
high-bypass-ratic fan which convarts the high-velocity, low-mass-flow

energy of the jet engine into a low-velocity, high-mass-flowv energy.

Therefore, the ratio of jet velocity to airplane velocity is reduced
and the propulsive efficiency is thereby increased. The more
efficiently this energy conversion is accomplished, the higher is the
overal]l system performance. Between the cruise fan components -
turbine, fan, and nozzle/nacelle afterbody - the greatest gain can be

made from the exhaust system installation.

The present investigation is concerned with the optimization of the
thrust-minus drag of the whole cruise fan nacelle. Such an exhaust

system has to be designed with the following objectives:

et
(]

High thrust coeffictient,

2 - low nacelle - afterbody drag coefficient,
3 - low friction drag,

4 - Smallest length/diameter ratio,

5 - low weight,

6 - About 50 percent throat area variation,

7 - Mechanical simplicity,

8 - High reliability,

9 - Adaptable for thrust reversal,

10 - Low noise level, and

11 - Lowv infrared radiation characteristic.



For the low nozzle-pres sare ratio rarge of a Lottt crurse tan nezle,
Soconverpent noszle, without or with coenterbody, pives the hiphest
performance.  The two characteristic cystem: are shoan oan Figure 1.
With reference to the above objectives and depending on the speetfic
installation and aireraft mission, eirther the comoal convergent

nozzle or the plug nozzie will produce the best overall system,
Both exhaust system configurations were, therefore, i1nvestigated in

this program. The models were based on mechanical design layouts

with equal throat area, nacelle dirameter, and throat area variation.
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DESCRIPTION OF TEST 1 QUIPMENT

FACILITY
Fhe static and external tlow teatainge aas pertformed in the Channel D
test facility at FluiDyne Enginceering Corporation in Minneapolass,

Minnesota,

Channel 5, the transonic wind tunnel shown an Firgure 2, has a

22-by 22-by 72 1nch long slotted-wall test section. This tunnel as
an 1nduction-type facility whereby atmospherice arr as drawn through
the test section using steam ejectors to reduce the downstream
pressure. A large contraction ratio, 19:1, and four small-mesh
screens in the inlet duct help keep the test section flow non-

uni formities at a minmamum.  The required pressure ratio across the
system (or test section Mach number) 1s maintained by controlling

the mass flow through the ejectors. Mach number is continuously
varied from 0 to 1.2, Contourced blocks on the solid walls are used
to extend the upper test Mach number from 1.2 to 1.35. During days
of high humidity, water condensation 1n the test section 1s prevented
(tor flow velocities above M 1.0) by the addition of heated aar
upstream of the anlet contraction. Models and the balance system
are supported tn the test cell hy o 5 anch-diameter tube (primary air
~upply) which 1s positioned by struts upstream of the 1nlet contraction.

Pramary air as paped to the model ftrom the facility air reservolr

and throttled through a gate valve

Tunnel calibrations consisted of the determination of the tunnel wall
axt1al Mach number distrabution at the model location and the

definition of the boundary layer profiles tor the test Mach numbers.



The Mach number distribution for the nominal test Mach numbers of

.4, .6, .8 and .9 1s shown in Figure 3 in relation to the model
installation. Boundary layer profiles were measured by a boundary
layer rake,which was located on the 5-inch-diameter model support
Just upstream (1 inch) of the nacelle leading edge. The profiles

for the test Mach numbers are presented in Figure 4. If the boundary
layer thickness is defined as that distance from the wall where the
velocity is 99 percent of the free-stream velocity, an approximate

average thickness of | inch is indicated.

No corrections were made to account for model blockage. If blockage
corrections were necessary, the measured drag coefficients of the
models would have varied with Mach number at M < Mcr- Since no such
variation was found it was concluded that the effects of blockage

must be negligible.

The facility is equipped with a force balance system which measures
the combined effect of the nozzle internal and external flows.

A schematic of the balance system is shown in Figure 5. 1[It is
located immediately upstream of the test mode! with only 3.5 inches
of the five-inch-diameter model support being part of the metric
section. Tare corrections for surface friction are, therefore, very

small which minimizes the uncertainty of the data.

The force balance consists of a temperature compensated strain gage
bridge. The bridge output is used to vary the frequency of an
oscillator, the output of which runs into a Berkley counter and is
converted to digital output which i1s printed out on tape at rapid

intervals during the run.
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A calibration of the system preceded the test program. This check-out
consisted of a dead-weight calibration of the force balance, and a

determination of the effective seal area, OA, as illustrated below.

e e ey
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The balance and seal characteristics were calibrated separately by the
following procedure. The balance was first loaded with known vetghts('t)
to obtain a curve of the balance force constant (g ), defined as axial
force divided by readout signal (Hg/Cy) versus readout signal (Cz)
with no pressure difference across the seal (Figure 6). Next, the
inlet duct was pressurized to test values of seal station differential
pressure. A number of upstream forces (R)wcre then applied to the
balance to reduce the net balance load 1n order that the seal gap
would approach actual test conditions. The sum of the indicated
balance load and the reverse load divided by the measured pressure
differential gave the effective duct area. Subtracting the actual
duct area from the effective duct area gave the effective seal area
(0A) as a function of readout signal (balance force) and differential
pressure (Figure 7). The seal tare effective area and the balance
force constant where used to obtain the purcly acrodynamic forces on
the model. The balance calibrations were repeated after each series

of runs.
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Using this system, a net thrust coefficient for the simulated flipht
Mach number can be directly calculated Detarls of thas calculation
are covered in Appendix | of this report. An assembly drawing of

a typical model installatton 1s shown 1n Figure 8, and Figures 9
through 13 present various views of test models installed 1n the

transonic facility.

Data obtained tn this facility consisted of measurements of balance
force, air flow rate, model total pressure, test cell pressure,

various pressures within the balance system, and nozzle contour and
afterbody pressures. The pressure data were measured on multitube
mercury manometer boards and precision pauges. Force balance data

were recorded by an eclectronice digital readout system.

MODELS

A total of 14 models were tested. Three models represented lift ‘crulrse
fan nacelles with cenventional conical nozzles, and cleven models had

a center plug (Figure 1), The geometry of the models s deseribed an
Table 1. The models were precision-made of stainless stedl arth
tolerances of 4,002 1nch on all critical dimensions and 410 minutes
on angular dimen.ions.  All surfaces 1n contact with airflow were

polished.

The building block construction method was used to facilitate model
changes and to save fabrication costs. The hardware consisted of

one adapter with choke plate and flow straightening scireens, three
conical nozzle shrouds, eci1ght plug nozzle shrouds, one conical nozzle
centerbody, four forward plug sections, three aft plug scctions, one

aft plug tip, six plugs, and a wooden cylinder for cylindrical flow

simulation.
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Typical model hardwiare 15 shown an Figures 14 and 150 Fhe contours
and geometric detairls are presented 1n Fipures |6 throapgh 23 The
tnstrumentation of the models constisted of static pressure taps on the
nacelle external surface the plug surface, and plup base at various
aczimut positions. A total pressure rake was installed an the adapto.
to measure the total pressure at the nozzle inlet section upstream

of the throat (Figure 8). The boundary layer profile was measured
with a rake located just upstrecam of the nacelle on the H-inch

diameter model support (Figures 2 and 4).
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EXPER IMENTAL PROCEDURE

A typical experiment in Channel 5 was conducted in the following
manner: the external flow Mach number was set from plenum pressure
measurements using the steam ejectors, and the required nozzle

pressure ratio was obtained by regulating the model total pressure

to the predetermined value. Wwhen these two parameters were stahilized,
and all manometer readings were steady, the force balance readout
recording system was started. Static pressures on the model surfaces
were measured with mercury manometers and recorded photographically.
The tes! was run according to the schedule of pressure ratio and

Mach number shown in Figure 24,

The gross thrust of the system was determined from the force balance
readings by correcting for the balance internal forces. Thrust
coefficients (Cp.p) were then computed by dividing the above calculated
gross thrust by the ideal thrust, defined as actual mass f{low times
ideal jet velocity. The ideal velocity was determined from thrust

function curves as a function of nozzle pressure ratio.

Discharge coefficients were calculated as the ratio of the actual
measured mass flow to the ideal mass flow at the existing nozzle

pressure ratio.

From the measured static and thrust-minus drag coefficients, the
total nacelle-boattail drag, including friction and external flow

effects (for the plug nozzles), was computed for all test points,

The boattail drag coefficients (Cp pr) and forebody drag coefficients
(CD PB) were calculated by the pressure-area integration method from
the static pressure measurements. Similarly, the effect of external

flow on the plug nozzle (Cp p) for models 4 - 14 was obtained by the

17



difference 1n plug axial force w.th and without external flow, The
boattat]l drag and plug-form drag coefficients do not 1nclude friction,
being only the pressure drag component. The detalled calculation

procedures are described 1n Appendix I1.



EXPERIMENTAL RESULTS

A summary of the important test results 1s given in Table 2 and
Figure 25. The thrust coefficients represent the installed (thrust-
minus-drag) performance of the cruise fan nozzle models according

to the pressure ratio - Mach number schedule shown in Figure 24 for

the 1.3 pressure ratio fan.

The thrust coefficients obtained as shown 1n Figure 5 account for the
following:
a. Internal model friction and pressure losses downstream

of the total pressure rake (including plug friction),

b. External friction and form drag over the entire length
of model from the split shown in the sketch to the end

of the shroud.

For these models, there was about 3.5 i1nches of 5-inch diameter pipe
between the split and the beginning of the model contour which contributed

some friction but no form drag.

The data were not corrected for this friction drag because it was
considered to be small enough to be neglected. It should be
observed, however, that the average friction coefficient for the
models will be less than for the full-si1ze nacelle because some
boundary layer growth has already occurred on the external surface

of the support pipe (Figure 4).

To determine the absolute level of thrust coefficient more accurately
1t would be required to reduce the boundary layer by suction i1n the
present test set-up or to test a nacelle with an air-turbine driven
fan 1n the free-stream without a support pipe. The presented data
shhould be regarded, therefore, as qualitative rather than

quantitative

19
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The scatter of the test data amounts to about 4.2 percent from a
reasonable curve drawn through the data. With noted exceptions, it
appears that the general level of thrust coefficient has 'een defined
within ¢.25 percent based upon comparison of measured thrust and drag
coefficients with pressure integrated drag coefficients and friction

estimates.

The varicvtion of the thrust coefficients (Cp-p) with pressure ratio and
Mach number is presented in the order of model number in Figures 26

to 41.

Discharge coefficients (Cp) are presented in a similar manner for all
models in Pigures 42 to 57. The discharge coefficients, by definition,
represent the ratio of actual mass flow to the ideal mavs flow at the

existing nozzle pressure ratio.

The external pressure distributicns of the cruise fan nacellces are
shown for each model in Figures 58 to 74 1n the form of pressure
coefficients, Cp = (P)-Po)/qw. Nozzle pressure ratio did not affect
the nacelle pressure distributions for the range of test pressure

ratios.

Plug pressure distributions (P /Pry) for all models are plotted versus
length for the various test pressure ratios and Much numbers.

Figures 75 to 87 show the plug pressure distributions for Mach O;
Figure 88, for Mach .4; and Figures 89 to 100, for Mach .8. Plug
pressure distributions are also presented in Figures 101 to 116 for
each configuration for all Mach numbers based on a Mach number -
pressure ratio relationship as given in Figure 24 for a fan pressure

ratio of 1.3.
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The total nacelle drag coeffictents (Cp n) were calculated from the
static and {nstalled thrust coefficients for each test point, A
summary of all data is given tn Figure 117 and in Table 2 as a

function of Mach nurber. This drag coefficient includes friction.

The results of the boattail drag calculations from the model afterbody
pressure data are presented as boattail drag coefficients (Cp pr) in
Figure 118 as a function of Mach number. Surface friction is not
included in these values, and the data are jindependent of pressur?

ratio.

The effect of external flow on the plug force, calculated from the
plug pressure distributi;on at static conditions and with external
flow, is presents:; : Yigure 119. This change in plug force has
been shown in the iwim of plug form drag coefficients (Cp p) versus
Mach number for the pressure ratios according to the test schedule

of Figure 24 for the 1.3 pressure ratio fan.

21

~



BLANK PAGE



FNALL AL TON

CONTCAL NOZZLES (MODLELS 1,2, 1)

All three contcal nozzle models have the same maximum nacel le
diameter and throat area; they difter only an thewr boattarl

peometry (Figures 16 and 17). A comparison ot the thrust coefticient
results of the conical nozzles (Figure 120) indicates that, for Mach
numbers up to and intluding .8, performance increases slightly with
decreasing nacelle boattail radius to maximum diameter ratio (R/D“)
and nacelle length to maximum diameter rattio (L/D“). For Mach ,9

thi1s trend is reversed,

Without external flow, the difference in the performance level is
caused by the change in internal friction as model size and extt

area are the same,

For Mach numbers up to and including .8, nacelle surface friction

drag is predominant over the pressure drag on the afterbody. This

can be observed in Figure 121, The total nacelle drag cocfficient

1s almost the same Jor the three models, The boattail drag
coefficient (not including friction), however, is decreasing with
decreasing boattail angle and 1s about 25 percent lower for model 1 than
for model 3. If models 2 and 3, with the smaller nacelle length and
boattail radius show higher performance than model 1, it can only be the
result of the models having less friction drag. With the calculated
friction drag coefficient of Figure 121, the friction drag decrements
were computed for models 1 and 3 at Mach .8 and they are shown in the
loss breakdown together with boattail and forebody drag i1n Figure ]2,
The total thrust decrement 18 smaller for model 3 becausce the rise 1n
boattail pressurc drag 1s overcompensated for by the decrease in

nacelle fraction drag.



Pressure drag i1s more important at Mach .9, and model 1, with the
greater boattail radius and inherently lower boattail angle,
demonstrates the highest performance. A loss breakdown for models 1

and 3 is given in Figure 123. It can be observed that the friction drag
decrement of models 3 is only slightly smaller and that the pressure

drag increase is greater than the reduction in friction drag.

The breakdowns of the performance losses (Figures 122 and 123) show
that installed performance increases with pressure ratio. The
explanation for this is given in Figure 124, which demonstrates that,
with constant nacelle drag coefficient, the thrust decrement (ACT)
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